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Abstract
A simple physically transparent formula is obtained in the asymptotic
evaluation of the Keesom integral K(a) for large values of the parameter a. Its
derivation is described in some detail and the asymptotic formula is compared
with the results obtained from direct three-dimensional numerical integration.

PACS number: 31.15.−p

1. Introduction

In 1921 Keesom [1] pointed out that if two molecules possessing a permanent dipole moment
undergo thermal motions, they will on average assume orientations leading to attraction.

If (θA, θB, ϕ) = � are the angles describing the mutual orientation of dipoles of strength
µA and µB , the interaction between the dipoles at distance R between their centres is given
by [2]

V (�,R) = µAµB

R3
F(�) (1)

F(�) = sin θA sin θB cos ϕ − 2 cos θA cos θB. (2)

The Boltzmann probability for a dipole arrangement having energy V is proportional to

W ∝ exp(−V/kT ) (3)

where k is the Boltzmann constant. Averaging the quantity V exp(−V/kT ) over the domain
S of all possible orientations � assumed by the dipoles gives

〈V exp(−V/kT )〉 = µAµB

R3

∫
S

d�F(�) exp[aF(�)]∫
S

d� exp[aF(�)]
= µAµB

R3

d

da
ln K(a) (4)
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where

a = −µAµB

R3kT
(5)

is a dimensionless parameter depending on R, T, and on the strength of the dipoles, and

K(a) =
∫

S

d� exp[aF(�)] (6)

is called the Keesom integral.
The aim of this paper is the analytic evaluation of K(a) for large values of the parameter

a. An asymptotic series expansion in inverse powers of (−a) is obtained for the logarithmic
derivative, whose first three terms describe in a physically transparent way the temperature
dependence of the interaction energy for low values of T .

2. The complete asymptotic series

Changing variables from θA, θB to α, β defined as

α = θA + θB, β = θB − θA, (7)

we note that the integral K(a) is perfectly well defined by equation (6), with the domain S of
integration defined by

0 � θA, θB � π, −π

2
� ϕ � 3π

2
or, because of symmetrization, restricting the variable range to

−π

2
� ϕ � π

2
and by multiplying the result by 2. At point ϕ = 0 the integrand of (6) has no poles so that the
path of integration may be shifted into the complex plane over a half-circle surrounding the
point ϕ = 0 without changing the value of the integral [3]. This may be subsequently evaluated
by integration by parts along this path, so avoiding the singularities, the result being of course
the same as that of the original integral. Hence the Keesom integral (6) can be transformed
into

K(a) = −2

a

∫ (3π)/2

−π/2

dϕ

sin ϕ

∂

∂ϕ

[∫ π

0
dα

∫ α

0
dβ exp[aF(�)]

]

=
(

−2

a

1

sin ϕ

) ∫ π

0
dα

∫ α

0
dβ exp[aF(�)]

∣∣∣∣
ϕ= 3π

2

ϕ=− π
2

−
∫ (3π)/2

−π/2
dϕ

[∫ π

0
dα

∫ α

0
dβ exp[aF(�)]

]
d

dϕ

[
−2

a

1

sin ϕ

]

= −2

a

∫ (3π)/2

−π/2
dϕ

cos ϕ

sin2 ϕ

∫ π

0
dα

∫ α

0
dβ exp[aF(�)] (8)

where the finite factor vanishes in the limit because of periodicity. The integration range
over α and β is restricted to the grey region in figure 1 taking into account the symmetries
of F(�).

We now expand the exponential into the infinite series,

exp[aF(�)] = e−2a exp

{
a

2
ρ2

(
1 +

1

2
cos 2η cos ϕ

)} ∞∑
λ=0

(−a)λ

λ!

[ ∞∑
n=2

(−1)n

(2n)!
ρ2nf2n(η, ϕ)

]λ

(9)
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π

2π

η

π

π θA

θB

θB θA
=− β

θB θA
=+ α

Figure 1. Illustration of variable transformation and integration range. The exact integration range
is represented by the grey area.

where

f2n(η, ϕ) = [(cos η)2n + (sin η)2n] +
1

2
cos ϕ[(cos η)2n − (sin η)2n]

(cos η)2n ± (sin η)2n = 1

2n
[(1 + cos 2η)n ± (1 − cos 2η)n], (10)

ρ2 = α2 + β2, η = tan−1 β

α
.

In the integration, ρ must go from 0 to the straight line which is the skew diagonal of the
square, satisfying ρ cos η = π (figure 1). Hence, the upper extremum of integration over dρ2

may appropriately be written as

X = (−a)ρ2 = (−a)
π2

cos2 η
(11)

and, changing variable to

(−a)ρ2 = x dρ2 = dx

(−a)
(12)

we get the Keesom integral in the form

K(a) = −exp(−2a)

a

∫ (3π)/2

−π/2
dϕ

cos ϕ

sin2 ϕ

∫ π/4

0
dη

∫ X

0
dx exp

{
−1

2
x

(
1 +

1

2
cos 2η cos ϕ

)}

×
∞∑

λ=0

1

λ!

∞∑
n1=2

∞∑
n2=2

· · ·
∞∑

nλ=2

(−1)n1+n2+···+nλ

(2n1)!(2n2)! · · · (2nλ)!

xn1+n2+···+nλf2n1f2n2 · · · f2nλ

(−a)n1+n2+···+nλ+1−λ
.

(13)
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Carrying the integration over dx, putting

n1 + n2 + · · · + nλ + 1 − λ = κ (14)

and collecting all terms with the same value of κ , we obtain

K(a) = −exp(−2a)

a

∫ (3π)/2

−π/2
dϕ

cos ϕ

sin2 ϕ

∫ π/4

0
dη

∞∑
κ=1

1

(−a)κ

κ−1∑
λ=0

1

λ!

×
∞∑

n1=2

∞∑
n2=2

· · ·
∞∑

nλ=2

f2n1(η, ϕ)f2n2(η, ϕ) · · · f2nλ
(η, ϕ)

(2n1)!(2n2)! · · · (2nλ)!


 (−1)κ+λ−12κ+λ(κ + λ − 1)!(

1 + 1
2 cos 2η cos ϕ

)κ+λ

+ (−1)κ+λ exp

{
−1

2
(−a)

π2

cos2 ϕ

(
1 +

1

2
cos 2η cos ϕ

)} 2
[
(−a) π2

cos2 η

]κ+λ−1

1 + 1
2 cos 2η cos ϕ

+ h.o.t.


.

(15)

By neglecting the last terms which are exponentially small, we obtain the complete expansion
of K∞(a) in inverse powers of (−a):

K∞(a)∼= −exp(−2a)

a

∞∑
κ=1

1

(−a)κ

κ−1∑
λ=0

(−1)κ+λ−12κ+λ(κ + λ − 1)!

λ!

×
∑
n1�2

∑
n2�2

· · ·
∑
nλ�2

1

(2n1)!(2n2)! · · · (2nλ)!

×
∫ (3π)/2

−π/2
dϕ

cos ϕ

sin2 ϕ

∫ π/4

0
dη

f2n1(η, ϕ)f2n2(η, ϕ) · · · f2nλ
(η, ϕ)(

1 + 1
2 cos 2η cos ϕ

)κ+λ
. (16)

The λ-fold sum over integers nj (j = 2, 3, . . . , λ) is constrained by condition (14). The
maximum value of nj is obtained by setting all the remaining ni (i �= j) equal to their
minimum value, which yields

nj = κ − λ + 1. (17)

We obtain in this way an infinite series expansion in (−a)−κ with numerical coefficients
which are the sum of a finite number of terms, which can be calculated either analytically or
numerically.

3. Evaluation of the leading terms of the resulting integral

We now take into explicit consideration the first two terms κ = 1, 2 in the asymptotic evaluation
of the integral (13). The approximate form of the integrand allows us to get rid of the upper
extremum of integration over dα with little error (see equation (15)):

exp[aF(�)] = exp

{
−a

[(
1 − 1

2
cos ϕ

)
cos β +

(
1 +

1

2
cos ϕ

)
cos α

]}

∼= exp(−2a) exp

{
a

2
(α2 + β2) +

a

4
(α2 − β2) cos ϕ

− a

4!
(α4 + β4) −1

2

a

4!
(α4 − β4) cos ϕ

}
∼= exp(−2a) exp

{a

2
(α2 + β2) +

a

4
(α2 − β2) cos ϕ

}
×

[
1 − a

4!

(
(α4 + β4) +

1

2
(α4 − β4) cos ϕ

)]
. (18)
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The asymptotic formula is obtained by pushing to infinity the upper extremum of integration
over dα:

K∞(a)∼= −exp(−2a)

a

∫ (3π)/2

−π/2
dϕ

cos ϕ

sin2 ϕ

∫ π/4

0
dη

∫ ∞

0
dρ2 exp

{
a

2
ρ2

(
1 +

1

2
cos 2η cos ϕ

)}

×
{

1 − 1

2

a

4!
ρ4(1 + cos2 2η + cos 2η cos ϕ)

}
. (19)

Performing the integration over dρ2 we obtain

K∞(a)∼= −exp(−2a)

a2

∫ (3π)/2

−π/2
dϕ

cos ϕ

sin2 ϕ

∫ π/4

0
dη

×
{

−2

1 + 1
2 cos 2η cos ϕ

+
1 + cos2 2η + cos 2η cos ϕ

3a
(
1 + 1

2 cos 2η cos ϕ
)3

}
. (20)

Symmetrization of the integrand f (cos ϕ) gives

f (cos ϕ) + f (− cos ϕ)

2
= cos2 ϕ

sin2 ϕ

∫ π/4

0
dη cos 2η

{
1

1 − 1
4 cos2 2η cos2 ϕ

−
1
2 + 3

2 cos2 2η − 5
8 cos2 2η cos2 ϕ + 1

8 cos4 2η cos2 ϕ

3a
(
1 − 1

4 cos2 2η cos2 ϕ
)3

}
. (21)

Since (21) to be integrated over ϕ has singularities at points ϕ = ±nπ with integer n, these
points must be bypassed by shifting the path of integration into the complex plane, as explained
above. By changing to variables ψ = 2η and y = tan ϕ, putting b2 = 1 − 1

4 cos2 ψ , we obtain

K∞(a)∼= exp(−2a)

a2

∫ π/2

0
dψ cos ψ

∫ +∞

−∞
dy

×
{

−1

y2(y2 + b2)
+

1
2 (1 + 3 cos2 ψ)(1 + y2)2

3ay2(y2 + b2)3
−

1
8 (5 cos2 ψ − cos4 ψ)(1 + y2)

3ay2(y2 + b2)3

}
.

(22)

The integrals above are evaluated by decomposing the rational functions of y2 into their
multiple-pole expansion according to the identities,

1

y2(y2 + b2)
= 1

b2

(
1

y2
− 1

y2 + b2

)
(23)

(1 + y2)2

y2(y2 + b2)3
= 1

b6

1

y2
− (1 − b2)2

b2

1

(y2 + b2)3
+

b4 − 1

b4

1

(y2 + b2)2
− 1

b6

1

y2 + b2
(24)

1 + y2

y2(y2 + b2)3
= 1

b6

1

y2
− 1 − b2

b2

1

(y2 + b2)3
− 1

b4

1

(y2 + b2)2
− 1

b6

1

y2 + b2
(25)

then using the formula resulting from integration in the complex plane [4]:∫ +∞

−∞

dy

(y2 + b2)n
= (2n − 3)!!

(2n − 2)!!

π

b2n−1
. (26)

A simple calculation gives

K∞(a) = π
exp(−2a)

a2

∫ π/2

0
dψ cos ψ

{
1(

1 − 1
4 cos2 ψ

)3/2 − cos4 ψ + 11
8 cos2 ψ + 1

6a
(
1 − 1

4 cos2 ψ
)7/2

}
. (27)
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Table 1. Logarithmic derivative of the Keesom integral K∞(a) for large values of the parameter
a to order a−2.

−a Asymptotic Correct |Error| 2/(3a2)

5 −1.573 333 −1.544 076 0.029 257 0.026 667
10 −1.793 333 −1.790 538 0.002 795 0.006 667
15 −1.863 704 −1.863 068 0.000 636 0.002 963
20 −1.898 333 −1.898 091 0.000 242 0.001 667
30 −1.932 593 −1.932 527 0.000 066 0.000 741
40 −1.949 583 −1.949 556 0.000 027 0.000 417
50 −1.959 733 −1.959 720 0.000 013 0.000 267

100 −1.979 933 −1.979 932 0.000 001 0.000 067

Turning to hyperbolic functions, the further substitutions,

sin ψ =
√

3 sinh t d sin ψ =
√

3 cosh3 t d tanh t

tanh t = x tanh
(
sinh−1 1√

3

) = 1
2

(28)

reduce the last integral to the elementary form∫ 1/2

0
dx

{
8

3
− 8

9a
(3 − 15x2 + 20x4)

}
= 4

3
− 8

9a
(29)

giving as our final expression for the asymptotic evaluation of the Keesom integral (6) the
simple result:

K∞(a)∼= 4π

3

exp(−2a)

a2

(
1 − 2

3a

)
. (30)

4. Comparison with the results of numerical integration and physical
interpretation of the results

Comparison with the results of three-dimensional numerical integration run on Mathematica
2.2 R© [5] is best done in terms of the logarithmic derivative of the Keesom integral (30):

d ln K∞(a)

da
∼= −2 − 2

a
+

2

3a2

(
1 − 2

3a

)−1
∼=−2 − 2

a
+

2

3a2
to order a−2. (31)

The results to six decimal digits are given in table 1. To this accuracy there is complete
equivalence between the results of numerical integration and those of the full series expansion
where terms are added until complete convergence is reached within a predetermined threshold.
We shall refer to the latter as Correct. The asymptotic approximation monotonically
overestimates the correct value by a quantity which rapidly decreases with increasing the
value of the parameter a. Three decimal figures agreement is reached already at a = −15. In
the third column the absolute values of the error, defined as

|Error| = |Asymptotic| − |Correct| (32)

are compared with the term 2
3a2 . It is observed that |Error| < 2

3a2 from a = −10 onwards,
while for a = −5 the situation is reversed. This means that for small values of a the asymptotic
expansion diverges. According to Laurentiev and Chabat [3] and Erdèlyi [6] a power series
is said to be asymptotically convergent if the error which results from replacing the function
S(z) of the complex variable z by a partial sum Sn(z) of the same series is infinitesimal of a
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order higher than the last term of the partial sum when z → ∞. It is seen that for z = −a this
condition is clearly fulfilled by the numbers given in the last two columns of table 1, so that,
at least in the range of values given in the table, the expansion is asymptotically convergent.

The simple result of equation (31), introduced in equation (4), gives the first three terms
of the expansion of 〈V exp(−V/kT )〉 in powers of T for low values of the temperature and
has a transparent physical interpretation. This matter is further discussed to some extent in
the appendix. The first term, independent of T , gives the zero-point attraction of the dipoles
at their minimum energy position, the head-to-tail linear configuration (see also [7, 8]). The
second term, proportional to T , gives the mean potential energy of a couple of bidimensional
oscillators of different force constants described by the variables α and β, with an entropic
factor (α2 − β2) which vanishes in the equilibrium position (α = β = 0) [9]. The third term,
proportional to T 2, corresponds to the non-quadratic part of the potential.
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Appendix. Small fluctuations around the dipole equilibrium positions

In a first approximation we have two independent linear oscillators for each dipole, which
undergo small oscillations around their equilibrium head-to-tail positions inside each one
of two arbitrary orthogonal planes that intersect through a straight line connecting the two
dipoles. We denote the small angular deviations of each oscillator in the corresponding plane
as θ

(ξ)

A , θ
(η)

A for dipole A, and θ
(ξ)

B , θ
(η)

B for dipole B, where ξ , η are orthogonal coordinate axes
in each of the two planes pointing in a direction orthogonal to the straight line joining the
dipoles, which we call the ζ -axis. Then

θA =
√

θ
(ξ)2
A + θ

(η)2
A , θB =

√
θ

(ξ)2
B + θ

(η)2
B (33)

and the potential energy of interaction between the two couples of linear oscillators is, to a
quadratic approximation,

V (�,R) = µAµB

R3

(
θAθB cos ϕ + θ2

A + θ2
B − 2

)
= µAµB

R3

(
θ

(ξ)

A θ
(ξ)

B + θ
(η)

A θ
(η)

B + θ
(ξ)2
A + θ

(η)2
A + θ

(ξ)2
B + θ

(η)2
B − 2

)
. (34)

The Keesom integral (6) is written as the sum-over-states,

K(a)∼=
∫ ∞

−∞
dθ

(ξ)

A

∫ ∞

−∞
dθ

(η)

A

∫ ∞

−∞
dθ

(ξ)

B

∫ ∞

−∞
dθ

(η)

B exp
[
aF

(
θ

(ξ)

A , θ
(η)

A , θ
(ξ)

B , θ
(η)

B

)]
=

∫ ∞

0
θA dθA

∫ ∞

0
θB dθB

∫ 2π

0
dηA

∫ 2π

0
dηB exp[aF(�)]

= 1

2

∫ 4π

0
d�

∫ 2π

0
dϕ

∫ ∞

0
θA dθA

∫ ∞

0
θB dθB exp[aF(�)] (35)

where

ηA = tan−1 θ
(η)

A

θ
(ξ)

A

, ηB = tan−1 θ
(η)

B

θ
(ξ)

B

ϕ = ηB − ηA, � = ηB + ηA.

(36)
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Here ϕ is defined as the angle between the directions of the vectors
(
θ

(ξ)

A , θ
(η)

A

)
and

(
θ

(ξ)

B , θ
(η)

B

)
.

The last row of equation (35) follows from the symmetries of F(�) and the fact that
cos(2π − ϕ) = cos ϕ. The potential energy of interaction is independent of � so that it
can be dropped from the integration, since it only supplies a constant factor which is cancelled
by normalization. Consequently, by using normal coordinates in equation (34), we obtain the
average potential energy of four independent linear oscillators as 2kT , the same result that is
obtained from the logarithmic derivative of the linearized Keesom integral.

As far as the non-quadratic part of the potential is concerned, we remark that the full
configuration space of the system of two coupled dipoles is the square in figure 1, times the ϕ

dimension (we do not consider the � dimension, for rotational symmetry as a whole). This
space is endowed with the evident symmetry of the potential energy about the skew diagonal
of the square, so that there is another stable equilibrium point (α = 2π , β = 0). The direct
diagonal of the square is the most probable path for the dipole flopping transition, with an
activation energy �V = −akT and ϕ = π , which corresponds to antiparallel dipoles at
the saddle point (but �V = −3akT for ϕ = 0). The relaxation times and the quantum
tunnelling times for these processes have been studied by us in [10–12]. Our asymptotic
series, equation (16), neglects these effects, being constructed so as to take into account only
the confinement into the grey region and the symmetrical counterpart with β negative in
figure 1. The density accounted for by any finite sum of terms in equation (13) is infinitesimal
at least as exp

[(
π2

4 − 2
)
a
]

on the piece of skew diagonal which is the border line of the grey
region, to be compared with the value exp[−a] = exp[aF(α = π, β = 0, ϕ = π)] which
results from equation (18).
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[3] Laurentiev M and Chabat B 1972 Méthodes de la Théorie des Fonctions d’une Variable Complexe (Moscow:

Mir) ch V, pp 441, 473
[4] Gradshtein I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic) p 294
[5] Wolfram S 1996 The Mathematica Book 3rd edn (Cambridge: Cambridge University Press)
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